One-pot hydrothermal synthesis of Mn3O4 nanorods grown on Ni foam for high performance supercapacitor applications
نویسندگان
چکیده
Mn3O4/Ni foam composites were synthesized by a one-step hydrothermal method in an aqueous solution containing only Mn(NO3)2 and C6H12N4. It was found that Mn3O4 nanorods with lengths of 2 to 3 μm and diameters of 100 nm distributed on Ni foam homogeneously. Detailed reaction time-dependent morphological and component evolution was studied to understand the growth process of Mn3O4 nanorods. As cathode material for supercapacitors, Mn3O4 nanorods/composite exhibited superior supercapacitor performances with high specific capacitance (263 F · g-1 at 1A · g-1), which was more than 10 times higher than that of the Mn3O4/Ni plate. The enhanced supercapacitor performance was due to the porous architecture of the Ni foam which provides fast ion and electron transfer, large reaction surface area, and good conductivity.
منابع مشابه
A Facile and Template-Free Hydrothermal Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability
Graphene/Mn3O4 composites were prepared by a simple hydrothermal process from KMnO4 using ethylene glycol as a reducing agent. Mn3O4 nanorods of 100 nm to 1 μm length were observed to be well-dispersed on graphene sheets. To assess the properties of these materials for use in supercapacitors, cyclic voltammetry and galvanostatic charging− discharging measurements were performed. Graphene/Mn3O4 ...
متن کاملPreparation of size-selective Mn3O4 hexagonal nanoplates with superior electrochemical properties for pseudocapacitors.
Porous Mn3O4 hexagonal nanoplates were synthesized through annealing the hydrohausmannite precursor obtained by a one-pot hydrothermal process and by precisely controlling the concentrations of potassium hydroxide and glucose. The effect of potassium hydroxide and glucose on the growth of hexagonal nanoplates was investigated, and a growth mechanism was also proposed. Due to its abundant pores,...
متن کاملHigh-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam
A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g(-1) at the current density of 10 ...
متن کاملFacile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications.
A novel binder-free electrode material of NiMoO4@CoMoO4 hierarchical nanospheres anchored on nickel foam with excellent electrochemical performance has been synthesized via a facile hydrothermal strategy. Microstructures and morphologies of samples are characterized by X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive s...
متن کاملMesoporous ZnCo2O4 nanoflakes grown on nickel foam as electrodes for high performance supercapacitors.
ZnCo2O4 nanoflakes, as electrodes for supercapacitors, are grown on a cellular nickel foam using a cost-effective hydrothermal procedure. The mesoporous ZnCo2O4 nanoflakes have large electroactive surface areas with strong adhesion to the Ni foam, allowing fast ion and electron transport. The nanoarchitecture electrodes deliver an excellent specific capacitance of 1220 F g(-1) at a current dens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013